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SUMMARY

A method for direct numerical analysis of three-dimensional deformable particles suspended in fluid is
presented. The flow is computed on a fixed regular ‘lattice’ using the lattice Boltzmann method (LBM),
where each solid particle is mapped onto a Lagrangian frame moving continuously through the domain.
Instead of the bounce-back method, an external boundary force (EBF) is used to impose the no-slip
boundary condition at the fluid–solid interface for stationary or moving boundaries. The EBF is added
directly to the lattice Boltzmann equation. The motion and orientation of the particles are obtained
from Newtonian dynamics equations. The advantage of this approach is outlined in comparison with the
standard and higher-order interpolated bounce-back methods as well as the LBM immersed-boundary
and the volume-of-fluid methods. Although the EBF method is general, in this application, it is used
in conjunction with the lattice–spring model for deformable particles. The methodology is validated by
comparing with experimental and theoretical results. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The lattice Boltzmann method (LBM) for the analysis of fluid flow problems [1–3] has been
extended to direct simulation of particles suspended in fluid [4–6]. In these methods, the no-slip
boundary condition at the fluid–solid interface is based on the standard ‘bounce-back’ (SBB) rule.
The interaction boundary is represented at the midpoints of the links, which are cut by the solid
particle boundary. A fluid–solid collision function is used to account for the momentum exchange
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766 J. WU AND C. K. AIDUN

and apply the interaction force to both fluid and the particle. In the earlier method presented by
Ladd [6], the lattice nodes on either side of the boundary are treated identically allowing the fluid to
fill the whole domain both inside and outside the ‘solid’ particle. The effect of the interior fluid on
the dynamics of the solid particle is discussed by Ladd [6]. In an alternative method presented by
Aidun and Lu [4] and Aidun et al. [5], there are no fluid nodes inside the solid particle. However,
both of these approaches use the transfer of population density in the LB equation to account for
the momentum transfer at the fluid–solid interface.

The SBB method has been used for the simulation of deformable particles with some success.
Buxton et al. [7] combine the LBM with lattice–spring model (LSM) to study the interaction and
deformation of an elastic shell with the surrounding fluid. Dupin et al. [8] use a two-dimensional
(2D) spring mesh to model the elastic membrane. MacMeccan et al. [9] use a combination of
the LBM for the fluid and finite element method (FEM) for the solid domain to simulate 800
deformable red blood cells (RBCs) at 45% concentration. All of these studies use the SBB boundary
conditions as it is easy to implement in 3D deformable particle simulations. However, with SBB
the solid boundary (broken line in Figure 1(a)) will not move continuously and smoothly in space;
instead it will jump from one midpoint to another causing fluctuations. To reduce this fluctuation,
one can use a finer lattice grid with more nodes at the boundary increasing the computational
time or higher-order bounce back based on interpolations. Recently, the bounce-back scheme
has been improved by using spatial linear, quadratic, and multi-reflection interpolations [10–12].
Although the interpolated bounce-back (IBB) methods are more accurate, in addition, to being
computationally expensive, they require at least two or three fluid nodes between nearby solid
surfaces for interpolation. This excludes the application to non-dilute suspensions of solid particles
with close interaction between the particles or the particle and the boundary [13, 14].

A modified approach analogous to the volume-of-fluid method has been developed [15–17]
based on a modified collision operator for the fluid nodes that are partially covered by solid. The
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Figure 1. (a) Regular Eulerian grid for standard bounce-back (SBB) rule; (b) regular Eulerian
grid for interpolated bounce-back (IBB) rule. In (a) the filled circles (•) are the fluid nodes
covered by the solid and open circles (◦) are the fluid nodes outside the solid particle; (c)
the solid Lagrangian nodes (•) and fluid Eulerian nodes (◦) for external boundary force (EBF)
method. The broken line (· · ·) shows the solid boundary. Note that the solid boundary nodes in

the (c) are located exactly on the fluid–solid boundary �.
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fluid lattices covered by the particle have the same velocity as the solid particle. The collision
operator for fluid lattices partially covered by the particle is modified so that the collision force in
each discrete direction is the product of the local moment difference between the fluid and solid in
that direction. The solid fraction coefficient varies between 0 for completely fluid filled nodes and
1 for the nodes completely covered by solid. This method requires accurate account of the solid
fraction at each time step in every fluid lattice. Otherwise, the computations may cause fluctuation
in velocity and force when the particle boundary crosses a fluid node. This approach could become
tedious as it is difficult to calculate the solid volume fraction accurately for 3D simulations with
irregular or deformable solid particle.

Another way to solve fluid–solid interaction is the immersed-boundary method (IBM), which
uses two grid systems and assumes that the solid boundary nodes are connected by a set of high
stiffness springs. This method, introduced by Peskin [18], has been applied to LBM [19] for
simulation of solid particle suspension. The basic steps in IBM are to (1) move each immersed solid
point based on the velocity obtained by interpolating the surrounding fluid velocity, (2) calculate
the internal elastic forces generated by the deformation of the boundary, (3) distribute the internal
elastic forces to the fluid by the same interpolating function from step 1, and (4) solve the discrete
form of the Navier–Stokes equations by using this force as the driving force to obtain the new
fluid velocity field. Recently, Zhang et al. [20] extended this approach to simulation deformable
2D capsules. In this scheme, the fluid–solid interaction force is based on the internal elastic force
as the membrane deforms and moves with local fluid velocity. The IBM is very effective as used
in conjunction with the LBM. However, it requires an artificial penalty parameter representing
the high stiffness spring constant for the links connecting the boundary nodes of the rigid or stiff
solid particles. In addition, the fluid–solid interaction force is based on the internal spring force
generated by the small deformation of the solid boundary with high stiffness. This can cause
instability problems in the analysis of suspended particles or capsules with deformable membrane.

In this paper, we implement a no-slip boundary condition in the LBM for stationary and moving
solid particles based on the EBF approach developed for the Navier–Stokes equation by Goldstein
et al. [21]. With the discrete EBF, we consider two overlapping grid systems; a regular Eulerian grid
for the fluid domain and a Lagrangian grid for the solid domain. The no-slip boundary condition
at the solid surface is applied by adding a force density to the fluid domain to force the difference
between the fluid and the solid velocity at the boundary nodes to be zero; and the counterforce
acting on the solid particles to update the position and velocity of the particles based on Newtonian
dynamics equations. The lattice Boltzmann equation with the additional boundary force density in
the form of a source term is solved to obtain the updated fluid velocity. We show that this approach
results in smoother fluid–solid interaction force as compared with SBB, and in general, more stable
as compared with the LBM with SBB or IBM (with deformable particles). For example, coupling
the LBM with the LSM could cause instabilities when increasing the spring constant or reducing
�xLSM/�xLBM, the ratio between the unit grid size of LSM and LBM [7, 22]. To reduce this
instability in LBM with SBB or IBM, one has to either increase the size of the particle (the solid
grid size) or use a finer fluid grid to increase the number of boundary nodes—both approaches
will increase the computational cost. We show that the EBF approach presented here reduces this
instability.

The presence of an external body force in the kinetic-based conservation equations has
been discussed in classical kinetic theory [23]. The connection between the source term in the
LBE and the resulting body force field in the Navier–Stokes equation has also been discussed
since the inception of the LBM two decades ago [24–28]. A method based on an EBF at the
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fluid–solid interface of the moving particle in the Navier–Stokes equation at the fluid–solid
boundary [21] to implement the no-slip boundary condition in the LBM for simulation of
solid particles and deformable capsules with a simple algorithm and no tunable parameters is
presented here.

The remaining part of this paper is organized as follows. In Section 2, the EBF method is
described in detail covering the basics of the fluid–solid interaction including a summary of the
basic steps. Several sample simulations with rigid solid particles are presented and compared
with theoretical solutions and experimental results in Section 3 to validate the accuracy of the
method. Results for single and large numbers of 3D capsules with deformable membrane (RBCs)
are presented in Section 4 including comparison with experimental data. The advantages and the
limitations of the method are discussed in Section 5.

2. METHODOLOGY

2.1. Fluid–solid interaction

Fluid flow over a solid particle results in normal and shear forces exerted by the fluid on the
particle and, conversely, by the particle on the fluid, referred to as the fluid–solid interaction force.
This forces the fluid adjacent to the solid surface to move with the surface velocity (no-slip). If
an EBF identical to the fluid–solid interaction force is exerted on the fluid, the fluid will move
with the same velocity. In other words, the effect of the particle motion on the fluid motion could
be identically replaced by an EBF [21]. Let �s and �f represent the continuum solid and fluid
domains, separated by the solid–fluid boundary, �. Here, subscripts s and f serve to symbolically
distinguish the solid and fluid domains, respectively. The set of position vectors of the solid and
fluid nodes are represented by �N

s and �M
f , where superscripts N and M denote the solid nodes

and fluid nodes, respectively. The subsets for solid and fluid boundary nodes are represented by �s
and �f, respectively. Note that because with this method, the solid boundary nodes are exactly on
the solid boundary, one can consider �s as a subset of �. We use x with components (x, y, z) as
the position vector in the fixed Cartesian coordinate system. As shown in Figure 1(c), the position
vector for the j th node on i th particle is given by xli j ∈�N

s , the position vector for the fluid nodes

is represented by xe∈�M
f , where superscripts l and e serve to symbolically distinguish the position

vector for solid nodes and fluid nodes, respectively. Let Ffsi(x, t) and g(x, t) represent the force
per unit volume acting, respectively, on the solid and the fluid points x on � at time, t . Therefore,
Ffsi(x, t)=−g(x, t) for x∈�. However, the force on the fluid boundary node xe is given by g(xe, t)
which is not equal to Ffsi(x, t) when x∈�. The Navier–Stokes and continuity equations with the
EBF can be written as

�

(
�u
�t

+u·∇u
)

= −∇ p+�∇2u+g(x, t)

∇ ·u = 0

(1)

where x∈�f, and in this equation, g(x, t)=0 when x /∈�. In the discretized formulation, the EBF,
g, is evaluated on the fluid boundary node by interpolation to find g(xe, t), as shown below (see
Equation (6)).
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In most situations, the boundary nodes will not coincide with the fluid nodes, so the fluid
velocity defined by Uf(xli j , t) at solid boundary node xli j at time t should be interpolated by

Uf(xli j , t)=
∫

�M
f

u(xe, t)D(xe−xli j )dx
e, xli j ∈�s (2)

where D(xe−xli j ) is a discrete Dirac delta function in 3D domain [29],

D(x)≡
⎧⎨
⎩

1

64h3

(
1+cos

(�x

2h

))(
1+cos

(�y

2h

))(
1+cos

(�z

2h

))
if |x|�2h

0 otherwise
(3)

where h≡�xLBM is the unit lattice length in LBM calculation. For linear velocity distributions,
the interpolation (3) can give exact solution. For smooth velocity distributions (continuous first-
order derivative), the interpolation has second-order accuracy. However, the velocity profile at the
boundary is usually not smooth and, subsequently, relation (2) is only first-order accurate at the
boundary. Further improvement to achieve higher-order accuracy is under investigation.

The initial velocity in the fluid domain and the particle position and velocity are known. The
fluid velocity at the particle boundary is equal to the particle velocity due to no-slip condition,
therefore,

Uf(xli j , t−�tLBM)=Up(xli j , t−�tLBM) (4)

where the LBM time step �tLBM=1, the term Up(xli j , t−�tLBM) is the particle velocity at solid

boundary node xli j at the previous time step. The fluid–solid interaction force Ffsi(xli j , t) acting on
the solid particle boundary node is given by

Ffsi(xli j , t)=� f (Uf(xli j , t)−Up(xli j , t−�tLBM))/�tLBM, xli j ∈�s (5)

where � f is the density of the fluid. The resulting force acting on the fluid boundary nodes is
given by

g(xe, t)=−
∫

�s

Ffsi(xli j , t)D(xe−xli j )dx
l
i j , xe∈�f (6)

where g will be used as an EBF term in the LB equation as will be discussed in Section 2.2.
F(xli j , t) is the combination of the fluid–solid interaction force Ffsi(xli j , t) and the external

force Fext(xli j , t) which could include the gravitational force, interparticle (electrical or lubrication)
forces; therefore,

F(xli j , t)=Ffsi(xli j , t)+Fext(xli j , t), xli j ∈�s (7)

So for the i th particle with N boundary nodes, if we assume the center of gravity of the particle
is xlci , then the total force Fi and the torque Ti on this particle are given by

Fi (t)=
N∑
j=1

F(xli j , t) (8)
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and

Ti (t)=
N∑
j=1

(xli j −xlci )×F(xli j , t) (9)

respectively.
The Newtonian dynamics equations for the i th particle are given by

Mi
dUi

dt
= Fi

Ii
dXi

dt
+Xi ×(Ii ·Xi ) = Ti

(10)

where Mi and Ii are the mass and the inertial tensor of the i th particle; and the velocity, Ui ,
and angular velocity, Xi , can be computed by numerical solution of Equation (10). Note that in
Equation (10), the term dXi/dt is dependent on Xi , so a simple Euler integration may not give
accurate results. A fourth-order accurate Runge–Kutta integration procedure is being used in this
study.

2.2. LBM with EBF

The LBM uses a regular Eulerian grid in the fluid domain. The fluid is modeled as a group of fluid
particles moving with discrete velocity. The state of the fluid at node xe at time t is described by
the distribution function, fk(xe, t), which is calculated by the lattice Boltzmann equation [1–3, 5]

fk(xe+ek, t+1)= fk(xe, t)+ 1

�
[ f eqk (xe, t)− fk(xe, t)] (11)

Here, f eqk (xe, t) is the equilibrium distribution function at (xe, t),� is the single relaxation time
constant and ek is the discrete velocity vector. The fluid density � and the macroscopic fluid
velocity u(xe, t) are obtained from the first two moments, given by

�(xe, t)=∑
k

fk(xe, t) and �(xe, t)u(xe, t)=∑
k

fk(xe, t)ek (12)

The most common lattice model for 2D case is D2Q9 model, which uses nine discrete velocity
directions, while the model for 3D case is D3Q19, which uses cubic lattice with 19 discrete velocity
directions [5] for the fluid particles moving along the horizontal, vertical, and diagonal links. The
equilibrium distribution function is defined as

f eqk =wk�[1+3ek ·u+ 9
2 (ek ·u)2− 3

2u
2] (13)

with w0= 4
9 for fluid particles at rest, w1−4= 1

9 for fluid particles moving in the non-diagonal
directions, and w5−8= 1

36 for the diagonal directions in 2D D2Q9 model; and w0= 1
3 ,w1−6= 1

18
(non-diagonal directions), and w7−18= 1

36 (diagonal directions) in 3D D3Q19 model. For the
present model, the pseudospeed of sound is cs=√

1/3 and the kinematic viscosity is �=(2�−1)/6.
In the longer time scale, the LBM is effectively solving the Navier–Stokes equations [30–32].

The lattice Boltzmann operators must be modified at the boundary to fit the wall boundary
conditions. In this paper, three different wall boundary conditions are applied. These are the
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periodic, no-slip wall, and the stress-free conditions. Details about these boundary conditions can
be found in an earlier publication [5, 14].

To simulate the interactions between the fluid and the solid particles, the LBM with bounce
back must incorporate the boundary conditions imposed on the fluid by the solid particles. In the
conventional LBM, fluid and solid domains share one regular Eulerian grid (Figure 1(a), (b)). The
nodes are scanned at each time step to mark the fluid nodes outside the solid and the fluid nodes
inside the solid boundary. The interaction is calculated by the lattice links that connect the inside
and outside fluid nodes. This operation is relatively computationally expensive.

The EBF method presented here involves two independent but overlapping grid systems. The
Eulerian grid represents the fluid domain where each particle is modeled with a Lagrangian grid.
The suspended particles move continuously in space while the no-slip boundary condition on the
surface of the particle is satisfied by the requirement that the fluid velocity at the solid boundary
node is equal to the solid velocity at that point. We have to emphasize here that the solid boundary
in LBM with SBB and the LBM with EBF is different—in SBB it is halfway between fluid and
solid nodes, where in EBF the solid boundary represented by the Lagrangian grid nodes is the
actual and the precise boundary of the particle moving continuously through the fluid domain, as
show in Figure 1(c).

The lattice Boltzmann equation should be modified to include the fluid–solid interaction force g
from Equation (6) by adding an additional term to the collision function. This changes the lattice
Boltzmann equation to

fk(xe+ek, t+1)= fk(xe, t)+ 1

�
[ f eqk (xe, t)− fk(xe, t)]+ 3

2
wkg ·ek (14)

Although a similar term is also used in the IBM by Feng and Michaelides [19], the method for
calculating the fluid–solid interaction force is very different. With the EBF method, g is computed
from (6) by the velocity difference between fluid and solid at the boundary nodes, whereas in
IBM, the interaction force is the internal spring force generated by the small deformation of the
solid boundary with high solid stiffness. In addition, the way to calculate the dynamics of the
solid particle is different. We integrate Equation (10) to capture the motion of the solid particle,
whereas in IBM the solid nodes move with the local fluid velocity.

2.3. Extension to deformable particles

Various numerical schemes can be applied for computation of the particle deformation. For example,
the FEM has been coupled to the LB equations to simulate suspension of deformable particles [9].
Here, we simulate the particle deformation using the LSM. This method consists of a set of
Hookean lattice–spring links connecting regularly spaced mass nodes. It has been shown that the
large-scale behavior of the LSM system can be mapped onto continuum elasticity theory [22]. In
this method, the elastic links that generate the stretching energy act as Hooke’s Law springs. For
small deformations, the elastic energy associated with the i th node is

Ei = k

2

n∑
j=1

(|ri j |−|reqi j |)2 (15)

Here, k is the spring constant, n is the total number of nodes that connect with node i, |ri j |
is the length between the node i and j, |reqi j | is the force-free equilibrium spring length between
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i and j . The elastic force Fs
i j acting on the lattice node i due to node j is calculated from the

derivative of the energy function

Fs
i j =−�Ei

�ri j
=−k

( |ri j |−|reqi j |
|ri j |

)
ri j (16)

So the total spring force acting on node i is

FsT
i =

n∑
j=1

Fs
i j (17)

This internal solid force is generated by the extension or contraction of the spring links. For
small deformations, this simple model is proved to follow the linear elasticity theory with Young’s
modulus E=5k/2�xLSM, Poisson’s ratio �= 1

4 and the speed of sound cs=�xLSM
√
3k/mi [22].

Here, �xLSM is the unit link length of the lattice spring and mi is the mass assigned to each
node. One can change Poisson’s ratio by introducing the harmonic potential, rotational potential,
or additional multi-body interaction terms in the energy function and elastic force function of
LSM [33, 34].

There are two basic approaches to calculate the deformation of the solid by using LSM as
outlined below. One way is to use an explicit scheme where mass is assigned on each node based
on the solid density and the total force acting on the i th node is given by

Ftot
i =FsT

i +Ffsi
i +Fext

i (18)

Here, FsT
i is the spring force, Ffsi

i is the fluid–solid interaction force and Fext
i is the external force.

Then we integrate Newton’s equation of motion, Ftot
i =mi (�

2ri/�t2), with an explicit method to
update the acceleration, velocity, and the position for every LS nodes. This method is straightfor-
ward and easy to implement, but it has to meet certain stability requirements [35]. The Courant
number Cr =cs�t/�xLSM needs to be smaller than one to reduce the fluctuations in the fluid–solid
interaction force, and �xLSM��xLBM. These conditions impose a severe limitation on the appli-
cability of this method. In 3D calculations, in order to reduce the computation cost, it is usually
preferred to have �xLSM<�xLBM.

The second approach is to use an implicit scheme where at each time step the particle will
first move without deformation due to Ffsi

i +Fext
i , then under the same force, the particle will

deform. Each lattice–spring node will instantly relax to its equilibrium state, the spring force
FsT
i at each solid node is given by Fs

i =−(Ffsi
i +Fext

i ), and based on Equation (16), we can
write

ri = 1

n

[
Ffsi
i +Fext

i

k
+

n∑
j=1, j �=i

( |reqi j |
|ri j | ri j +r j

)]
(19)

The implicit method is more stable than the explicit method, although it may require additional
computational time in the deformation calculations. However, considering that the lattice–spring
deformation calculations are a small part of the whole simulation, especially in the simulations that
have large number of deformable particles with particle–particle interaction, the implicit scheme
seems to be a better choice.
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The computational algorithm that has been used in the EBF LB–LSMmethod can be summarized
as follows:

(i) At t= t0, the initial fluid velocity in the fluid domain and the particle velocity/position are
known.

(ii) The fluid velocity Uf on the boundary node is obtained by Equation (2), the fluid–solid
interaction force Ffsi from Equation (5) is applied on the solid boundary nodes.

(iii) The interaction force and the external force are applied to all solid boundary nodes, the
total force and the torque acting on the particle are calculated according to Equations (8)
and (9), the particle velocity and position are updated by numerical integration, and the
particle deformation is calculated by LSM.

(iv) The interaction force also acting back on the fluid lattice nodes is computed by Equation
(6) and the fluid field is solved by the modified LBM equation (14). The computations loop
back to step (ii).

3. SAMPLE PROBLEMS

In this section, we provide some example problems to validate the LBM–EBF method. In
Section 3.1, we simulate the rate of rotation of a circular cylinder in confined shear flow as
a function of the rate of shear or Reynolds number (Re). The results are compared with the
experimental data for two confinement ratios. The problem examines the accuracy of computing
the shear stress on the surface of a rotating body at moderate Re. In this section, we also
demonstrate the small fluctuations in SBB that are eliminated by the EBF method. In Section 3.2,
we computationally reproduce Jeffery’s solution for rotation of a 3D ellipsoid in shear flow
at Re	1. Comparison of computational results for sedimentation of a sphere in a confined
channel with experiments is presented in Section 3.3, including a note on the effect of grid
resolution. Computational simulations of single and multiple deformable particles are presented in
Section 4.

3.1. A circular cylinder in simple shear flow

The motion of a neutrally buoyant circular cylinder in simple shear flow has been studied over a
wide range of Reynolds numbers. The cylinder is free to rotate with center axis on the centerline
of the fluid field. Owing to the wall effect, the non-dimensional rotation speed �̇/G depends on
the Reynolds number, Re=Ga2/�, and the flow confinement ratio �=H/a, where G is the shear
rate, a is the diameter of the cylinder, and H is the channel height. The LBM method uses a
computational domain with 1200×200 lattice nodes. The results are compared at two confinement
aspect ratios with the experimental data. The non-dimensional angular rate of rotation with different
Reynolds numbers and confinement ratios are compared with the experimental data by Poe and
Acrivos [36] at H/a=11.24 and Zettner and Yoda [37] with H/a=4. The non-dimensional
rotation rate will decrease more rapidly with the Reynolds number with larger confinement ratio,
as shown in Figure 2.

When H/a
1, one can show from Jeffery’s [39] solution (set a=b in Equation (22))
that in the limit Re→0, the rate of angular rotation, �̇=G/2. For the case H/a=11.4,
the influence of the boundary walls on the circular cylinder is small and therefore �̇/G
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774 J. WU AND C. K. AIDUN

Figure 2. Non-dimensional angular rate of rotation of a torque-free cylinder in simple shear flow. The
solid squares (�) and triangles (�) are the experiment data of Poe and Acrivos [36] and Zettner and
Yoda [37], the open squares (�) and open triangles (�) are the results from present LBM with EBF, the

crosses (×) are the results from Ding and Aidun [38] with SBB at Re<5.

4a

a
a

- Uw /2

Uw /2

y

x

Figure 3. A neutrally buoyant cylinder in simple shear flow, off-center initial position.

approaches ∼0.5 as Re→0. For the small confinement ratio, H/a=4, however, the effect of
the viscous shear stress on the cylinder due to the presence of the boundary walls becomes
significant. The cylinder rotates at a lower angular velocity due to the viscous stress. In the
limit of Re→0, the rotation rate �̇/G→0.42 for H/a=4 is as shown in previous studies
[38, 40].

An advantage of the EBF method over SBB is the elimination of small fluctuations, which
can be detrimental in the simulation of deformable particles. To demonstrate, consider a cylinder
with diameter a positioned at rest half way from the bottom wall to the center between two
parallel plates. The plates are 4a apart moving in opposite directions with velocity, Uw/2, as
shown in Figure 3. The computational domain has 2000×80 lattice nodes. The trajectory of the
particle toward the centerline computed with LBM with SBB and EBF agrees well, as shown
in Figure 4. However, the upward velocity, v, shows fluctuation with SBB as compared with no
fluctuation with EBF, as shown in Figure 5. Although the amplitude of the fluctuation in v is small
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Figure 4. Non-dimensional y position vs non-dimensional time Gt . The solid line is from LBM with SBB
and the dash line is from LBM with EBF.

Figure 5. Non-dimensional y direction velocity vs non-dimensional time Gt . The solid line is from LBM
with SBB and the dash line is from LBM with EBF.

(∼0.2% of Uw), this may result in numerical instability in the application to deformable particles.
There is no fluctuation with EBF because the fluid–solid boundary moves continuously across the
domain.

3.2. An ellipsoid in simple shear flow

The motion of a solid ellipsoid in a simple shear flow is analyzed in this section. The boundary
of this particle is given by

x2

a2
+ y2

b2
+ z2

c2
=1 (20)
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- Uw /2

Uw /2
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Figure 6. A solid ellipsoid immersed in simple shear flow.

Figure 7. G=1/6000,a=12,�=1.5, Re=0.064, Case(1) b=c=9, the solid line is Jeffery’s solution and
the crosses (×) are the simulation result, Case(2) b=c=3, the dash line is Jeffery’s solution and the open

squares (�) are the simulation result.

When one of the principal axes of the ellipsoid is kept parallel to the vorticity vector, as shown
in Figure 6, the rotation angle, �, and the angular rate of rotation, �̇, are given by Jeffery [39]

�= tan−1
(
b

a
tan

abGt

a2+b2

)
(21)

�̇= G

a2+b2
(b2 cos2�+a2 sin2�) (22)

where G is the shear rate and t is time. In our simulation, the computational domain is 120×
120×60 lattice nodes. The Reynolds number Re=Gd2/�, where d=2a. For different aspect
ratio b/a, the computational results agree very well with Jeffery’s analytical solution, as shown in
Figure 7. This demonstrates that the no-slip boundary condition on the ellipsoid surface is well
satisfied.
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Figure 8. Sedimentation of a sphere in a square cylinder. The curve is the best fit to the
experimental data of [41]. The open squares (�) and crosses (×) are the results from

LBM–EBF with different grid resolution.

3.3. Sedimentation of a sphere in a square cylinder

A sphere with diameter d is released in a vertical square cylinder of width L settling under gravity
force Gf, as shown in Figure 8. The sphere is initially released at the center of the cross-section of
the channel with zero velocity and settles along the axis of the channel reaching a constant velocity.
The steady-state settling velocity Uw is normalized with the free settling velocity Ug =Gf/(3��d)

from the Stokes equation.
The simulation results are compared with the experiments of Miyamura et al. [41]. In the present

analysis, the channel is divided into 1600×32×32 lattice units. Zero velocity profile is applied at
the inlet and the normal derivative of velocity is set to zero at the downstream boundary. The curve
is the best fit to the experimental data. Results from a finer grid 3200×64×64 are also included
at d/L=0.1 and 0.7 for evaluating the effect of grid resolution. Figure 8 shows the comparison
between the experimental and our computational results.

4. CAPSULES WITH DEFORMABLE MEMBRANE AS A MODEL OF RED BLOOD CELL

In this section, several problems are presented to demonstrate the effects of EBF method. We
combine LBM and LSM to simulate the deformable particles in suspension. Deformable particles
in the shape of red blood cells are used as an example. It is well known that red blood cell (RBC)
deformation is one of the most important aspects of blood rheology. Changes in RBC deformation
are known to alter blood flow viscosity [42, 43] and diffusivity [44]. The LBM with EBF presented
here is capable of simulating suspensions of RBC at the physiological volume fraction of 47%.

In this paper, a capsule with deformable membrane that has the same geometry and the material
properties of real RBC is used. RBC has a complicated membrane structure with a cytoskeleton and
phospholipid membrane encapsulating a fluid solution of hemoglobin. Under normal static condi-
tion, it has 3D biconcave elastic membranes with elastic shear modulus of 6.6×103 dynes/cm [45].
The plasma surrounding the RBC has a viscosity of 1.2 cP at 37◦C. The RBC has a major diameter
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of 7.8�m and a thickness of 2.2�m at the flank and 0.9�m at the dimple. These values are used
in the following simulation.

4.1. RBC in capillary pressure-driven flow

It is well known from the past experiments that the RBC shape changes into a parachute shape in
capillary pressure-driven flow, as shown in Figure 9, retain their shape through the capillary tube,
and recover to its original shape in the post capillary region. This unique deformation of the RBC
is necessary in nature for high fluidity in micro vessels and for high efficiency of oxygen diffusion
to tissue by increasing the surface area and interaction with the endothelial cells.

Several investigators have used this phenomenon to measure the RBC’s deformability. In the
recent experimental setup of Tsukada et al. [46], they use a set of transparent crystal micro channels
and a high-speed video camera to capture high-resolution pictures and achieve quantitative data.
Dilute suspensions of RBCs passed through a glass capillary tube with a diameter of 9.3�m were
imaged and analyzed. The velocity and the deformation index DIP of RBC depend on the pressure
gradient in the channel. In this experiment [46], DIP is given by

DIP= c

d
(23)

H d

c

Figure 9. Axisymmetrically deformed RBC in a ‘parachute configuration’.

Figure 10. Deformation index DIP vs the capillary number CaP , the solid squares (�) are the experiment
data from Tsukada et al. [46] and the open squares (�) are LBM–EBF simulation results.
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Here, d is the diameter of the deformed RBC in the parachute configuration and c is the length
of RBC along the axial direction as shown in Figure 9. The simulation results are compared with
the experimental results [46]. The Capillary number CaP in Figure 10 is defined as

CaP = �Ux

S
(24)

where � is the viscosity of the suspending fluid, Ux is the RBC velocity and S is the membrane
shear modulus.

The RBC deformation index DIP is shown in Figure 10 as a function of Capillary number CaP .
The simulations agree well with experiments up to CaP ≈0.35 where we see a deviation between
the results.

4.2. Bulk viscosity of blood

The non-Newtonian shear-thinning viscosity of blood is well documented [47, 48] with RBC
deformation recognized as one of the most important factors in suspension viscosity [42, 43].

At a high volume fraction, blood is often described by Casson’s model, given by

√
�eff=√

�yield+C
√
G (25)

where �eff is the effective suspension shear stress, �yield is the yield stress of the suspension in
shear, C is a constant and G is the shear rate. The reduced viscosity of blood is defined as

�r = �eff
�

(26)

where �eff=�eff/G is the effective suspension viscosity, � is the viscosity of the suspending fluid.
A Casson fluid exhibits non-Newtonian and shear-thinning behavior. The reduced viscosity �r is
a function of shear Capillary number Cas, which is defined as

Cas= �GR

S
(27)

where G is the shear rate and R is the average undeformed RBC cross-section radius when viewed
from the side. Here the shear rate G=Uw/H , where Uw is the velocity difference between the
top and bottom walls, H is the channel height.

The reduced viscosity can be successfully simulated with O(102) particles [9, 49]. To study the
blood rheology at continuum-level scales, 120 RBCs are simulated at 47% volume fraction with
0.0149<Cas<0.1342, corresponding to shear rate ranging between 16 and 144s−1, respectively.
The plasma has a viscosity of 1.58 cP with a density of 1030kg/m3 at 25◦C [45, 50]. Simulations
of 80, 120, and 160 RBCs produce the same result in bulk viscosity. The cases with Cas<0.01
are not compared here due to the influence of non-hydrodynamic particle interactions that lead to
RBC aggregates known as rouleaux [51]. It is shown in Figure 11 that the simulation results have a
similar profile close to the experimental data reported by Brooks et al. [47]. The snapshot of a layer
of RBCs is shown in Figure 12 to show the strong interaction and deformation of the particles.
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Figure 11. The open squares (�) are the reduced suspension viscosity of simulations of 120 RBCs at
47% volume fraction as a function of Cas. The solid squares (�) are the experimental data reported by

Brooks et al. [47] at 25◦C with 47.6% volume fraction.

Figure 12. Example simulation of 120 RBCs at 46.7% volume fraction.
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5. CONCLUSIONS

We have presented the LBM with external boundary force (EBF) method for fluid–solid interaction
problems. The novel application to the lattice Boltzmann method (LBM) provides an efficient
and more stable computational tool compared with the conventional LBM with SBB, particularly
for large number of deformable particles suspended in viscous flow. By coupling with LSM, one
can easily re-mesh the solid for different geometries. We can also prescribe the motion of the
deformable particle. The operations in LBM with EBF are local, it can be easily programmed
for parallel machines. The method has been validated by comparing the 3D computational results
with the experimental results and theoretical solutions. With this method, deformable particles may
have different densities than the fluid and each particle can have different elastic properties with
no additional demand on computational time.

REFERENCES

1. Chen H, Chen S, Matthaeus WH. Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method.
Physical Review A 1992; 45:5339.

2. Hou S, Zou Q, Chen S, Doolen G, Cogley AC. Simulation of cavity flow by lattice Boltzmann method. Journal
of Computational Physics 1995; 118:329.

3. Mcnamara GR, Zanetti G. Use of the Boltzmann equation to simulate lattice-gas automata. Physical Review
Letters 1988; 61:2332.

4. Aidun CK, Lu Y. Lattice-Boltzmann simulation of solid particles suspended in fluid. Journal of Statistical Physics
1995; 81:49–61.

5. Aidun CK, Lu Y, Ding E. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann
equation. Journal of Fluid Mechanics 1998; 373:287.

6. Ladd AJC. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1.
Theoretical foundation. Journal of Fluid Mechanics 1994; 271:285.

7. Buxton GA, Verberg R, Jasnow D, Balazs AC. Newtonian fluid meets an elastic solid: coupling lattice Boltzmann
and lattice–spring models. Physical Review E 2005; 71:056707.

8. Dupin M, Halliday I, Care C, Alboul L, Munn L. Modeling the flow of dense suspensions of deformable particles
in three dimensions. Physical Review E 2007; 75:066707.

9. MacMeccan RM, Clausen JR, Neitzel GP, Aidun CK. Simulating deformable particle suspensions using a coupled
lattice-Boltzmann and finite-element method. Journal of Fluid Mechanics 2009; 618:13.

10. Bouzidi M, Firdaouss M, Lallemand P. Momentum transfer of a Boltzmann-lattice fluid with boundaries. Physics
of Fluids 2001; 13:3452.

11. Ginzburg I, d’Humieres D. Multireflection boundary conditions for lattice Boltzmann models. Physical Review
E 2003; 68:066614.

12. Yu D, Mei R, Luo L, Shyy W. Viscous flow computations with the method of lattice Boltzmann equation.
Progress in Aerospace Sciences 2003; 39:329.

13. Chun B, Ladd AJC. Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps.
Physical Review E 2007; 75:066705.

14. Ding E, Aidun CK. Extension of the lattice-Boltzmann method for direct simulation of suspended particles near
contact. Journal of Statistical Physics 2003; 112:685.

15. Holdych DJ. Lattice Boltzmann method for diffuse and mobile interfaces. Ph.D. Thesis, University of Illinois at
Urbana Champaign, 2003.

16. Noble DR, Torczynski JR. A lattice Boltzmann method for partially saturated computational cells. International
Journal of Modern Physics C 1998; 9:1189–1201.

17. Strack O, Cook B. Three-dimensional immersed boundary conditions for moving solids in the lattice-Boltzmann
method. International Journal for Numerical Methods in Fluids 2007; 55:103.

18. Peskin CS. Numerical analysis of blood flow in the heart. Journal of Computational Physics 1977; 25:220–252.
19. Feng Z, Michaelides E. The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction

problems. Journal of Computational Physics 2004; 195:602.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:765–783
DOI: 10.1002/fld



782 J. WU AND C. K. AIDUN

20. Zhang J, Johnson P, Popel A. An immersed boundary lattice Boltzmann approach to simulate deformable liquid
capsules and its application to microscopic blood flows. Physical Biology 2007; 4:285.

21. Goldstein D, Handler R, Sirovich L. Modeling a no-slip flow boundary with an external force field. Journal of
Computational Physics 1993; 105:354–366.

22. Buxton GA, Care CM, Cleaver DJ. A lattice spring model of heterogeneous materials with plasticity. Modelling
and Simulation in Materials Science and Engineering 2001; 9:485–497.

23. Liboff R. Kinetic Theory: Classical, Quantum, and Relativistic Descriptions (3rd edn). Springer: Berlin, 2003.
24. Buick JM, Greated CA. Gravity in a lattice Boltzmann model. Physical Review E 2000; 61:5307.
25. Guo Z, Zheng C, Shi B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Physical

Review E 2002; 65:046308.
26. He X, Zou Q, Luo LS, Dembo M. Analytic solutions and analysis on non-slip boundary condition for the lattice

Boltzmann BGK model. Journal of Statistical Physics 1997; 87:115.
27. Ladd AJC, Verberg R. Lattice-Boltzmann simulation of particle–fluid suspensions. Journal of Statistical Physics

2001; 104:1191.
28. Martys NS, Shan X, Chen H. Evaluation of the external force term in the discrete Boltzmann equation. Physical

Review E 1998; 58:6855.
29. Peskin CS. The immersed boundary method. Acta Numerica 2002; 11:479.
30. Chapman S. On the law of distribution of molecular velocities, and on the theory of viscosity and thermal

conduction, in a non-uniform simple monatomic gas. Philosophical Transactions of the Royal Society 1916;
216:279–348.

31. Enskog D. Kinetische theorie der vorgaenge in maessig verduennten G. Ph.D. Thesis, Uppsala, 1917.
32. Ginzburg I, d’Humieres D. Principles of the kinetic theory of gases. Handbuch der Physik 1958; 12:205.
33. Arbabi S, Sahimi M. Test of universality for three-dimensional models of mechanical breakdown in disordered

solids. Physical Review B 1990; 41:772.
34. Schwartz LM, Feng S, Thorpe MF, Sen PN. Behavior of depleted elastic networks: comparison of effective-medium

and numerical calculations. Physical Review B 1985; 32:4607.
35. Alexeev A, Verberg R, Balazs AC. Modeling the motion of microcapsules on compliant polymeric surfaces.

Macromolecules 2005; 38:10244.
36. Poe GG, Acrivos A. Closed-streamline flows past rotating single cylinders and spheres: inertia effects. Journal

of Fluid Mechanics 1975; 72:605.
37. Zettner CM, Yoda M. The circular cylinder in simple shear at moderate Reynolds numbers: an experimental

study. Experiments in Fluids 2001; 30:346.
38. Ding E, Aidun CK. The dynamics and scaling law for particles suspended in shear flow with inertia. Journal of

Fluid Mechanics 2000; 423:317.
39. Jeffery GB. The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of

London, Series A 1922; 102:161.
40. Mikulencak DR, Morris JF. Stationary shear flow around fixed and free bodies at finite Reynolds number. Journal

of Fluid Mechanics 2004; 520:215.
41. Miyamura A, Iwasaki S, Ishii T. Experimental wall correction factors of single solid spheres in triangular and

square cylinders, and parallel plates. International Journal of Multiphase Flow 1981; 7:41.
42. Kim D, Beissinger RL. Augmented mass transport of macromolecules in sheared suspensions to surfaces. Journal

of Colloid and Interface Science 1993; 159:9–20.
43. Shin S, Ku Y, Park MS, Suh JS. Measurement of red cell deformability and whole blood viscosity using

laser-diffraction slit rheometer. Korea–Australia Rheology Journal 2004; 16:85–90.
44. Cha W, Beissinger RL. Augmented mass transport of macromolecules in sheared suspensions to surfaces b.

Bovine serum albumin. Journal of Colloid and Interface Science 1996; 178:1.
45. Waugh R, Evans EA. Thermoelasticity of red blood cell membrane. Biophysical Journal 1979; 26:115.
46. Tsukada K, Sekizuka E, Oshio C. Direct measurement of erythrocyte deformability in diabetes mellitus with

transparent microchannel capillary model and high-speed video camera system. Microvascular Research 2001;
61:231–239.

47. Brooks DE, Goodwin JW, Seaman GV. Interactions among erythrocytes under shear. Journal of Applied Physiology
1970; 28:172–177.

48. Merrill EW, Cokelet GC, Britten A, Wells RE. Non-Newtonian rheology of human blood—effect of fibrinogen
deduced by ‘subtraction’. Circulation Research 1963; 13:48–55.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:765–783
DOI: 10.1002/fld



SIMULATING 3D DEFORMABLE PARTICLE SUSPENSIONS 783

49. Sierou A, Brady JF. Rheology and microstructure in concentrated noncolloidal suspensions. Journal of Rheology
2002; 46:1031–1056.

50. Harkness J, Whittington RB. Blood–plasma viscosity: an approximate temperature invariant arising from
generalised concepts. Biorheology 1970; 6:169–187.

51. Fung Y. Biomechanics: Mechanical Properties of Living Tissues. Springer: Berlin, 1993.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:765–783
DOI: 10.1002/fld


